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Optimality Conditions in

Generalized Geometric Programming

by

Elmor L. Peterson*

Abstract. Generalizations of the Kuhn-Tucker optimality conditions

are given, as are the fundamental theorems having to do with their

necessity and/or sufficiency.
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1. Introduction. Optimization problems from the real world usually possess
a linear-algebraic component, either directly in the form of problem lin-
earities (e.g., those involving the node-arc incidence matrices in network
optimization) or indirectly in the more subtle form of certain problem
nonlinearities (e.g., those involving the coefficient matrices in quadratic
programming or, perhaps more appropriately, those involving the exponent
matrices in signomial programming). As demonstrated in the author's recent
survey paper (1] and some of the references cited therein, such a compon-

ent can frequently be exploited by taking a (generalized) geometric pro-

gramming approach. In fact, geometric programming is primarily a body of

Rl v Shates b2

techniques and theorems for inducing and exploiting as much linearity
as possible.

The following sections present optimality conditions that are

tailored to geometric programming and can be viewed as generalizations of

the Kuhn-Tucker optimality conditions. Although the fundamental theorems

having to do with their necessity and/or sufficiency have already been
described in [1], proofs are given here for the first time.

In geometric programming, problems with only linear constraints are
treated in essentially the same way as problems without constraints. Only
problems with nonlinear constraints require additional attention and hence
are classified as constrained problems.

Since many important problems are unconstrained (e.g., most network
optimization problems), and since the theory for the unconstrained case is
much simpler than its counterpart for the constrained case, the unconstrained

case is treated separately (even though its theory is actually embedded in g

the theory for the constrained case).




Mathematically, this paper is essentially self-contained.

2. The unconstrained case. Given a nonempty cone ZCEr (n-dimensional

b

Euclidean space), and given a function g with a nonempty domain C< En, the

resulting "geometric programming problem" ¢ is then defined in the following

way .

PROBLEM 7. Using the "feasible solution" set ;

e

%0z |

’

o

calculate both the "problem infimum'

o4 inf g(x) _.:
x €S

and the "optimal solution'’ set

A
H={x€S|g ) =0}

Needless to say, the "ordinary programming" case occurs when X is actually A
the entire vector space En. i
Our optimality conditions for the preceding problem & utilize the

""dual cone"

”

A
y={ye€ E, | 0<(x,y) for each x€X}.

They are stated as part of the following definition. *

DEFINITION. A critical solution (stationary solution, equilibrium solution,

P solution) for problem 7 is any vector x* that satisfies the following P
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optimality conditions:

x*€ZNe, Vg (%) €y

and

0 ={x*, vg(x*)).

If the cone Z is actually a vector space, then ';z=Z'L and hence the P
optimality condition 0 = (x*, Vg (x*)) is redundant and can be deleted.
Furthermore, in the ordinary programming case, the vector space 'y=En'L ={0},
so the remaining P optimality conditions become the (more familiar) "or-

dinary optimality conditions"
x*€C and Vg (x*) =0.

The following theorem gives two convexity conditions that guarantee

the necessity and/or sufficiency of the P optimality conditions.

Theorem 1. Under the hypothesis that g is differentiable at x*,

(1) given that X is convex, if x* is an optimal solution to problem
@, then x* is a critical solution for problem ¢ (but not conversely),

(ii) given that g is convex on C, if x* is a critical solution for

problem 7, then x* is an optimal solution to problem &.

Proof. To prove part (i), first recall that the optimality of »* implies
that x*€2ZNC. Then, notice that the optimality of x*, the differenti-

ability of g at x*. and the convexity of X imply that the directional

derivative




(vg @*),x) >0 for each XEXL.,

Likewise, the optimality of x*, the differentiability of g at x*, and the
observation that x*+s(-x*) €% for s<1 imply that the directional deri-

vative
<'7?u*)) -X*> 20-

Consequently, 75 (x*) €% and 0 =(x*, 75 (r¥)).

Counterexamples to the converse of part (i) are numerous and easy to
construct. In fact, the reader is probably already familiar with counter-
examples from the ordinary programming case.

To prove part (ii), first recall that the convexity of g and the

differentiability of g at x* imply that
g () =g %) > (vg (%), x - x*) for each  xe€cC.

Then, notice that the assumptions 0 = {x*, Vg (x*)) and Vg (r*) €% imply that
(Vg@x*), x-x*)={yg(x*),x)>0  for sach X€X.

From the preceding displayed relations we see that g(x) -g(x*) >0 for each
X €XZNC. Consequently, the assumption x* € XNC shows that x* is optimal

for problem &. q.e.d.

It is worth noting that g is differentiable everywhere for most of
the examples given in section 2.1 of [1] Moreover., Z 1is polyhedral and
hence convex for each of those examples, and g is convex for important
special cases of each of those examples. Consequently, the P optimality

conditions frequently characterize the optimal solution set o/* for problem &.

e SPRNSERN— el e MY i G,
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3. The constrained case. To extend geometric programming by the explicit

inclusion of (generally nonlinear) constraint functions, we introduce two
nonintersecting (possibly empty) positive-integer index sets I and J with
finite cardinality o(I) and o(J) respectively. In terms of these index

sets I and J we also introduce the following notation and hypotheses:

(la) For each k€ {0}UI UJ there is a function g with a non-

empty domain Ckf;En ,» and there is a nonempty set
k

DjCEn. for each j€J.

(2a) For each k€ {0}UIUJ there {s an independent vector variable
xk in En , and there is an independent vector variable K with
k
components Kj for each j€ J.

(3a) xI denotes the cartesian product of the vector variables xi,

i€I, and xJ denotes the cartesian product of the vector
J B I J 4
variables x°, j€J. Hence, the cartesian product (x ,x ,x ) =x

is an independent vector variable in En’ where

A\
n=n+2n+2n.
0 1 i Jj

(4a) There is a nonempty cone XS E -

The resulting "geometric programming problem" A is then defined in the

following way.

Problem A. Consider the objective function G whose domain

cg{(x,v_) |xk€Ck, ke{o}u1, and (xj, K )ec;, jeJl

]

and whose functional value




r T

e 1
|
! (x5, ) +T gt e k)
p P¥ go ?gj s-j ’ ,;
lgnere a
A

t C+=[(xj,'v€ ) | either «, =0 and sup (xj,dj)< +®, or
; h| L R e e B adep _
5, ! |
j |

€,>0 and x exjcj]
i and
’ 3
sup (xj,dj) if «, =0 and sup (xj,dj)<+m
ad e 1 dien
] j
+(xj K )‘i
o Bt
i >0 ]
\r’.jgj(x /K.j) _1_ij and x eKjCj.

Using the feasible solution set
3

4 i
s={(x,k) €C | x€X, _a_n_c_i_gi(x )y<o0, i€1},

calculate both the problem infimum

A
o inf G(x,K)

(x,K) €S

]

and the optimal solution set

A
s*={(x,K) €8 | G(x,K) =0l

Needless to say, the unconstrained case occurs when I =J=0, 8y:C =0:C,

| and X=%. On the other hand, the "ordinary programming' case occurs when
|
J=0,

A
n =m and Ck’co for some set COCEm kefojvr,




and

where there is a total of 14o0(I)

cac

X = column space of

J identity matrices U that are mxm.

In particular, an explicit elimination of the vector space condition x€X

by the linear transformation

0

U

v
shows that problem A is then equivalent to the very general ordinary pro-

gramming problem

Minimize g, (z) subject to
gi(z) <0 Lek
z€C .
o

Our optimality conditions for the preceding problem A utilize the

dual cone
A
t=(y€E | 0 <{x,y) for each x€X},
whose vector variable y has the same cartesian-product structure as the

vector variable x. They are stated as part of the following definition.

DEFINITION: A critical solution (stationary solution, equilibrium

solution, P solution) for problem A is any vector (x*,K*) for which there




is a vector A* in Eo(I) such that (x*,K%*) and A* jointly satisfy the

following P optimality conditions:

x* € X,
gi(x*i)so 1€1,
*
i )‘i >0 s =
%* *,
Xigi(x )=0 1€1,
Ve
0 =(x¥*,y*)
and
*3 % *3  *
<xj,y j>=g‘;(xj’Kj) jeJ’
where
*0 A *
y 0=vg0(x0),
* A * *i
and
*3 A *3  *
y j=vgj(x j/Kj) j€J.

Needless to say, if the cone X is actually a vector space, then Y=X" and
hence the P optimality condition 0 = (x*,y*) is redundant and can be

deleted. Furthermore, in the ordinary programming case, the vector space

t={yeE [y +Zy" =0),
I

so the remaining P optimality conditions are essentially the (more familiar)

"Kuhn-Tucker optimality conditions'
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gi(z*)SO i€1,
x’i‘ >0 i€1,

*
"131(“*) =0 i€1,

and

v, (2% +? K:Vgi(z*) -0 .

On the other hand, the following important concept from ordinary pro-

gramming plays a crucial role in the theory to come.

DEFINITION. For a consistent problem A with a finite infimum ¢, a Kuhn-

Tucker vector is any vector A* in Eo( with the two properties

I)
*>0 1€1
Aiz s
and
0= inf Lo(x,K;k*),
(x,K) €C
x€X

where the (ordinary) Lagrangian

A
Lo(x,K;X) =G (x,K) +§ xigi(xi).

It is important to realize that the preceding definition of Kuhn-Tucker
vectors differs considerably from the widely used definition involving

the Kuhn-Tucker optimality conditions. Even in the ordinary convex program-
ming case the two definitions are not equivalent, though it is well-known
that the preceding definition simply admits a somewhat larger set of vectors
in that case.

The following theorem gives two convexity conditions that guarantee
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the necessity and/or sufficiency of the P optimality conditions.

*k
Theorem 2. Under the hypotheses that 81 is differentiable at x ,

*

j)’ jed,

*
k€ {0}UIUJ and that g‘j' is differentiable at (x 3,k

(i) given that X is convex, if (x*,K*) is an optimal solution to

problem A and if \A* is a Kuhn-Tucker vector for problem A, then (x*,K%*)

is a critical solution for problem A relative to A* (but not conversely),

(ii) given that 81 is convex on C , k€ {0JUIUJ, if (x*,k*) is

k’

a critical solution for problem A relative to A*, then (x*,X*) is an

optimal solution to problem A and \* is a Kuhn-Tucker vector for problem

A.

Proof. To prove part (i), first recall that the optimality of (x¥*,K%¥)
implies that x*€ X and that gi(x*i) <0, 1€I. Then, note that the defining
properties for a Kuhn-Tucker vector A* assert that )‘:20, i €I and that
@ S G(x*,K*) +2 X:gi(x*i). Since p=G(x*,Kk*), the preceding inequalities
collectively :mply that k:gi(x*i) =0, i€1; from which we infer that
Lo(x*,K*;x*) = inf Lo(x,K;A*).
(x,K)€C
x€X
Since our hypotheses clearly imply that Lo( v ,X;A*) is differentiable at
(x*,K*), the preceding equation and the convexity of X imply that the

directional derivative
(VxLo (x*,K*;0%), x) >0 for each x € X.

Likewise, the differentiability of Lo( v ,X3;A%) at (x*,K*), the preceding




=T

equation, and the observation that x*+s(-x*) € X for s<1 imply that the
directional derivative

1 (7L (x*,K¥;1%), - x¥) 20,
X 0

*
Consequently, VxLo(x*,K*;}\*) €Y and 0 =(x ,VxLo(x*,K*;A*)), which means
that y*€Y and 0 = (x*,y*). Finally, since our hypothesis that g;’ is
1 *j ok
differentiable at (x ’Kj
’ ability of Lo( s ,X3A%) at (x*,K*) and the preceding displayed equation

), j€J clearly implies that K*>0, the differenti-

; imply that

* k%) =
VKLO(X sK*;0%) =0,

=9

Counterexamples to the converse of part (i) are numerous and easy to

vhich means that (x 3,y 1) =g‘j*(x*~1 K1), J€J.

construct. In fact, the reader is probably already familiar with counter- :
examples from the ordinary programming case.

To prove part (ii), first observe that Lo( ¢ ,xX3;A*) is convex on C and 3
that Lo( v ,X;A*) is differentiable at (x*,K*), These two observations 1

together imply that

L (%, 150%) = L_(x*, K¥5)%) 2 (v L, (¥, 0%50%) , (x,K) = (x%, k%))

(x,¥)

for each (x,K) €C.

*
j)’ j €J simply means that 1

VKLo(x*,K*;A*) =0, elementary linear algebra shows that

*3 * *
Since the assumption that (x j,y j) =g';(x j,K

<V(x,K)Lo(xw’K*;k”‘)’ (x,K) = (x*,k%)) = (VxLo(X*,K*;A*), x - x*) for each (x,K).

Since it is clear that vxLo(x*,K*;k*) =y*, the assumptions that 0 = (x*,y*)




=}2=

and y* €Y imply that
(VxLo(x*,“-*;X*), x-x*) =(VxLo(x*,K*;)\*), x) 20 for each (x,X) for which x € X.
From the preceding displayed relations we infer that

Lo(x,K;x*) -Lo(x*,K*;k") >0 for each (x,K) € C for which x€ X.

%* *
Using this inequality and the assumption that kigi(x i') =0, 1€1I, we see

k that
*
G(x*,K*) <G(x,K) +2 Aigi (xi) for each (x,K) €C for which x € X.
1

*
On the other hand, the assumption that Ai 20, 1 €1 guarantees that

P ——

*
G(x,K) +2 kigi(xi) <G(x,K) for each (x,K) €C for which gi(xi) <0, 1€1.
I
From the preceding two displayed inequalities we infer that
G(x*,Kk*) <G(x,K) for each (x,K) €S.

*
Consequently, the assumptions that gi(x i') <0, 1 €1 and that x*€ X imply

that (x*,k*) is optimal for problem A, which means of course that ¢ =G(x*,K*)

* *
Using these facts and the assumption that kigi(x i') =0, 1€I, we infer from
the last displayed inequality involving Lo that A* is a Kuhn-Tucker vector

for problem A. q.e.d.

It is worth noting that for most of the examplés given or alluded to
in section 2.2 of [1] the 8, k€ {0JUIUJ are differentiable everywhere
while either J 1s empty or the g;, JE€J are differentiable everywhere
except at the origin. Moreover, X is polyhedral and hence convex for each

of those examples, and the 8y k€{0)JUIUJ are convex for important




13

special cases of each of those examples. Consequently, the P optimality
conditions frequently characterize the optimal solution set §* for problem
A.

Characterizations of S* that do not require differentiability of the
e k€ {0}JUIUJ and the g;, J€J, but do require conjugate transform

theory are given in [2].
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